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Do all the pieces matter? Assessing the reliability of law 

enforcement data sources for the network analysis of wire taps 
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Abstract   Law enforcement agencies rely on data collected from wire taps to construct the organizational chart 

of criminal enterprises. Recently, a number of academics have also begun to utilise social network analysis to 

describe relations among criminals and understand the internal organisation of criminal groups. However, before 

drawing conclusions about the structure or the organisation of criminal groups, it is important to understand the 

limitations that selective samples such as wire taps may have on network analysis measures. Electronic 

surveillance data can be found in different kinds of court records and the selection of the data source is likely to 

influence the amount of missing information and, consequently, the results. This article discusses the impact that 

the selection of a specific data source for the social network analysis of criminal groups may have on centrality 

measures usually adopted in organised crime research to identify key players. 
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1. Introduction 

In the last decades, the network perspective has become more and more influential in organised crime 

research, and social network analysis (SNA) has become popular among scholars interested in 

describing informal relations among criminals and understanding the internal organisation of criminal 

groups.1 One of the common applications of SNA in a criminological context consists in the 

representation of criminal groups and their activities, mainly in a descriptive way.2 These studies 

generally include only persons who are involved in criminal activities and are part of a specific criminal 

group; however, differences may exist in the way network boundaries are identified by the researcher. 

Another typical feature of these studies is the reliance on law enforcement data – especially, electronic 

surveillance data – as their primary source of information on the relations among criminal groups 

members. 

Electronic surveillance data have been increasingly used by scholars interested in describing the 

structure of relations within criminal groups by capturing the conversations among their members, as 

they occur every time there is the need to communicate to organise illegal activities, exchange 

 
1 Sparrow, “Application of Network Analysis,” 251–274; McIllwain, “Organized Crime,” 301–323; 

McAndrew, “Structural Analysis,” 51–94; Natarajan, “Drug Trafficking Organization,” 273–298; Klerks, 

“Network Paradigm,” 53–65; Bruinsma and Bernasco, “Transnational Illegal Markets,” 79–94; Morselli, Contacts, 

Opportunities and Criminal Enterprise; Morselli, Inside Criminal Networks; Natarajan, “Heroin Distribution 

Network,” 171–192; Varese, “Criminal Connections”; von Lampe, “Human Capital,” 93–100; and van der Hulst, 

“Introduction to Social Network Analysis,” 101–121. 
2 Carrington, “Social Network,” 244. 
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information, or arrange meetings.3 However, little attention has been paid to issues related to the 

accuracy, validity, and reliability of these data, with a notable exception, namely a recent article by 

Federico Varese and Paolo Campana addressing some of these issues and suggesting the use of a 

combination of different data analysis techniques.4 This article deals with the problem of accuracy and 

reliability of electronic surveillance data available in different court records and how the source of 

information might affect the SNA of criminal groups. Two separate issues will be addressed: group 

coverage, namely the extent to which different court documents provide an accurate description of the 

overall network, and the identification of key players. 

The next section introduces the problem of missing data in criminal network research, presents some 

of the possible causes of missing information beyond and within the final representation of criminal 

networks, and reviews and discusses the different sources of law enforcement data. After a description 

of the data and the methodology adopted for the study in Section 3, the fourth section presents the main 

results and Sections 5 and 6 discuss the limitation of this study and the main implication of the results 

for criminal network analysis, respectively. The last section concludes. 

2. Missing data issues in criminal network research 

The usefulness of SNA for the study of criminal groups has been largely discussed. Among the 

numerous benefits, this methodology allows to conduct a detailed analysis of the internal structure of 

criminal groups, capturing the informal relations among their members and avoiding any assumption 

about the organisational structure of the network prior to its actual analysis.5 

Several studies have also highlighted a number of limitations and methodological problems connected 

to these applications of SNA.6 Some of these limitations are well known by network analysts, such as 

the problem of capturing network dynamics; some others, although being shared with other fields of 

research, are magnified by the specific application of network analysis concepts and tools to covert 

networks. Among them, the problem of missing information – and thus network completeness – is 

particularly relevant in analysing criminal networks, since it affects the scope and structure of the 

network under consideration.7 Missing nodes or edges can indeed create a sort of domino effect and 

heavily affect the results, creating problems of inference also in the case of descriptive purposes.8 

The issue of missing information beyond the final representation of the network is usually associated 

with the specification of network boundaries, which refers to the definition of rules for including specific 

 
3 Natarajan, “Drug Trafficking Organization”; Natarajan, “Heroin Distribution Network”; Varese, “Criminal 

Connections”; Morselli, Inside Criminal Networks; Morselli, “Vulnerable and Strategic Positions,” 382–392; 

Calderoni, “The ’Ndrangheta Through the Lens”; and Campana, “Eavesdropping on the Mob,” 213–228. 
4 Campana and Varese, “Listening to the Wire,” 13–30. 
5 Morselli, Inside Criminal Networks, 41; Ianni and Reuss-Ianni, “Network Analysis,” 81–82; Sparrow, 

“Application of Network Analysis,” 272; McIllwain, “Organized Crime,” 319; von Lampe, “Human Capital,” 95; 

and van der Hulst, “Introduction to Social Network Analysis,” 104. 
6 Sparrow, “Application of Network Analysis,” 262; McAndrew, “Structural Analysis,” 62; Spapens, “Macro 

Networks,” 193; von Lampe, “Human Capital,” 95; van der Hulst, “Introduction to Social Network Analysis,” 

110; Morselli, Inside Criminal Networks, 47; and Malm, Bichler, and Van De Walle, “The Ties That Bind,” 70. 
7 von Lampe, “Human Capital,” 95; van der Hulst, “Introduction to Social Network Analysis,” 110; Morselli, 

Inside Criminal Networks, 47; and Malm, Bichler, and Van De Walle, “The Ties That Bind,” 70. 
8 Ianni and Reuss-Ianni, “Network Analysis,” 70; van der Hulst, “Introduction to Social Network Analysis,” 

112; and Sparrow, “Application of Network Analysis,” 262. 
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actors and relations in the network under investigation.9 In organised crime research, the boundaries of 

the overall network, as identified by law enforcement agencies, do not necessarily coincide with those 

of the criminal group, and the researcher may identify internal boundaries on the basis of either 

theoretical or practical considerations.10 A possible solution might be to include actors in the final 

representation of the network on the basis of their legal position across criminal justice stages, namely, 

whether the actors have been monitored, targeted, arrested, accused, or sentenced. Depending on the 

criminal justice stage data refer to, their scope, as well as their precision, varies. Indeed, the number of 

network members decreases through the various stages within the criminal justice system, since only a 

small percentage of monitored individuals is accused and sentenced; whereas the precision of 

information increases, because actors are included in the network on the basis of judicial evidence and 

not just because of their participation in phone conversations with alleged criminals.11 

Nonetheless, the boundary specification problem cannot be completely handled by the researcher, 

since the definition of the external boundaries of the network lies where the court files end and it is thus 

dependent upon available information, rather than a precise choice of the researcher.12 Scholars usually 

rely on law enforcement data sources for the collection of information used for their analyses, but law 

enforcement agencies have a partial vision of the network under investigation, so that their data contain 

incomplete information.13 Indeed, investigators have to rely on data-gathering methods that result in 

incomplete information, such as observations, archives, informants, or witnesses. Hence, information 

from prosecutorial transcripts, interrogation material, or criminal investigation files from completed 

cases, as well as interviews with offenders or law enforcement officers, presents limitations in terms of 

data accuracy and completeness.14 

Even transcripts of wiretapped conversations include only a sample of all the conversations that 

occurred among the members of a criminal group, although the sample is not random but rather a 

purposive one, since the police usually transcribes all conversations that pertain to criminal activities in 

a broad sense, whereas conversations on personal or unrelated matters are discarded.15 

Different court documents might also be available to the researcher, and the external boundaries of 

the network, as defined by law enforcement agencies, might vary across these documents. The electronic 

communication transcripts can be found in different kinds of court records, such as wiretap records, 

police reports, arrest warrants, and sentences.16 In jurisdictions that allow to use wiretaps as evidence in 

trials, all the relevant conversations are fully transcribed in wiretap records and made available to the 

prosecutor and the judge. The arrest warrant usually includes only a selection of the electronic 

communication transcripts, as well as other relevant information on the suspects from informants and 

other investigative activities. A part of the electronic surveillance data is also usually reported in the 

 
9 Marsden, “Network Data and Measurement,” 439; Laumann, Marsden, and Prensky, “Boundary Specification 

Problem,” 62; and Kossinets, “Effects of Missing Data,” 249. 
10 Campana and Varese, “Listening to the Wire,” 21. 
11 Morselli, Inside Criminal Networks, 44. 
12 Campana and Varese, “Listening to theWire,” 20; van der Hulst, “Introduction to Social Network Analysis,” 

111; and Ianni and Reuss-Ianni, “Network Analysis,” 71. 
13 Morselli, Inside Criminal Networks, 41; von Lampe, “Human Capital,” 95; Malm and Bichler, “Networks of 

Collaborating Criminals,” 20; and Campana and Varese, “Listening to the Wire,” 17. 
14 Baker and Faulkner, “Social Organization of Conspiracy,” 847; and Malm, Bichler, and Van De Walle, “The 

Ties That Bind,” 55. 
15 Campana and Varese, “Listening to the Wire,” 20. 
16 Ibid., 18. 



 

4 

sentence, along with other sources of evidence.17 Hence, as shown in Figure 1, the closer we are to the 

judgment, the more likely we are to lose a relevant subset of electronic surveillance data. 

The purposive sample of electronic surveillance data includes all telephone conversations which were 

wiretapped by the police and considered relevant for the criminal case. Conversations on matters 

unrelated to criminal activities are not included in the sample, although some of them might have been 

misinterpreted by law enforcement agencies and included in the wiretap records as well. At the same 

time, not all criminally related conversations might have been wiretapped and reported in the court 

documents. As we move from the wiretap records to the judgment, the amount of electronic surveillance 

data included in the judicial documents decreases. It is plausible to think that information on actors who 

have been arrested and accused is maintained, whereas the information on individuals who fell into the 

surveillance net but were not brought to court is discarded. 

 

 

Figure 1. Samples of telephone conversations among criminal network members. 

Source: Author’s adaptation of Campana and Varese 2012. 

 

However, the amount of missing data might be larger, since only a sample of conversations among 

arrested and accused individuals might be included in the arrest warrant and the judgment. 

Although the conversations wiretapped by the police already constitute a sample of all the 

conversations that occurred among criminal network members during the investigation, the use of 

 
17 The United States, Canada and most European countries (e.g. Italy, Germany, the Netherlands) are among 

the jurisdictions in which wiretaps can be used as evidence. In Italy, for example, wiretapped conversations 

pertinent to the investigation are fully transcribed; these include only communications which are considered 

relevant by the public prosecutor and the defence attorneys, whereas conversations on personal or unrelated matters 

are discarded. The prosecutor’s request for pre-trial detention and the arrest warrant usually include a selection of 

the electronic communication transcripts, as well as other relevant information (e.g., from informants and other 

investigative activities). A part of the electronic surveillance data is usually reported in the sentence, along with 

other sources of evidence. 

All phone conversations 

Conversations included 

in the judgement 
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sources of information other than wiretap records is likely to cause a further loss of electronic 

surveillance data and might lead to misleading results. For this reason, Campana and Varese suggest to 

avoid the judgment as the main source of information for statistical analysis, because the set of 

conversations is likely to be small and biased, and the results might not be reliable.18 On the other hand, 

arrest warrants and sentences are more likely to be accessible to researchers aiming at studying criminal 

groups, and thus might constitute a useful source of data, provided they include sufficient information 

on relations among network members.19 

Along with missing nodes, missing links or edges might also constitute a problem. Considering that 

criminals involved in organised crimes often use different telephones and lines to communicate with 

different individuals or categories of individuals, and that the name of the holder does not necessarily 

correspond with the actual user, the police might not be able to wiretap all the telephones and lines used 

to deal with criminal activities. If law enforcement agencies fail to intercept a specific telephone or line, 

this might result in missing links among specific actors. Also, after the end of the investigations, there 

might be evidence that a portion of electronic surveillance data gathered by law enforcement agencies 

was collected adopting an illegal/unauthorised procedure. This might result in the discard of those data 

from court documents and, as a consequence, in missing data within the final representation of the 

network. 

Previous research in the field of network analysis mainly focused on the identification of key players 

and studied the effect of missing information on commonly used network measures, such as centrality.20 

The work by Bolland constitutes one of the first attempts to examine the robustness of centrality under 

conditions of random and systematic errors.21 More recently, Costenbader and Valente assessed the 

stability of eleven centrality measures by randomly sampling 59 empirical networks at eight different 

sampling proportions.22 This work has been extended by Borgatti and his colleagues, who examined the 

robustness of centrality measures under conditions of incomplete or imperfect data, including node and 

edge removal.23 These studies proved that centrality measures are quite robust, especially under small 

amounts of error, and that their stability is influenced by the type of study and the characteristics of the 

network.24 In all these cases, data were randomly sampled, i.e. nodes and links were randomly extracted 

from the networks, and social network measures were estimated and compared across different samples 

of the same network. However, ‘the results could be quite different for practical settings in which the 

data collection methodology makes systematic errors (such as more readily losing nodes with low 

degree)’.25 

A recent study by Xu and Chen analysed the effect of missing links and edges in dark networks.26 

Whereas different percentages of edges were randomly removed from the networks, confirming the 

validity of findings under small amounts of error, node removal was systematic. In order to test the 

 
18 Campana and Varese, “Listening to the Wire,” 19. 
19 Bright, Caitlin, and Chalmers, “Illuminating Dark Networks,” 152. 
20 Bolland, “Sorting Out Centrality”, 233–253; Costenbader and Valente, “Stablity of Centrality Measures,” 

283–307; Borgatti, Carley, and Krackhardt, “Robustness of Centrality Measures.” 124–136; and Xu and Chen, 

“Topology of Dark Networks,” 58–65. 
21 Bolland, “Sorting Out Centrality.” 
22 Costenbader and Valente, “Stablity of Centrality Measures.” 
23 Borgatti, Carley, and Krackhardt, “Robustness of Centrality Measures.” 
24 Costenbader and Valente, “Stability of Centrality Measures,” 305; and Borgatti, Carley, and Krackhardt, 

“Robustness of Centrality Measures,” 31. 
25 Borgatti, Carley, and Krackhardt, “Robustness of Centrality Measures,” 132. 
26 Xu and Chen, “Topology of Dark Networks.” 
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robustness of dark networks against attacks by law enforcement agencies, node removal involved either 

hubs, characterised by a high degree of direct contacts, or bridges, i.e. nodes positioned along the 

shortest path between two other network actors.27 The finding that dark networks are more vulnerable 

to the removal of bridges rather than highly connected actors is relevant for intelligence purposes, but it 

does not provide insights into the effect that missing data due to the purposive sample of information by 

law enforcement agencies might have on SNA measures. 

All these studies focused on different measures of the centrality of actors within a network. Centrality 

measures are particularly relevant in criminal network analysis, because they allow to identify critical 

nodes, namely those actors who are particularly involved in criminal activities and whose removal would 

maximise network disruption.28 Degree and betweenness centrality are the two most common measures. 

The former estimates the number of actors every criminal network member is connected to; the latter 

measures the number of times every actor falls on the shortest path between two other members, 

allowing for the identification of those individuals who facilitate the exchange of information or 

resources in the network.29 

Assuming that a researcher aiming at analysing a criminal group might want to collect information 

about all links among all individuals that fall within the surveillance net, and then eventually, decide to 

focus only on arrested or convicted ones; this article seeks to understand the influence that the reliance 

on a specific source of electronic surveillance data might have on the missing data problem and, as a 

consequence, on the results of the SNA of criminal groups. Considering the widespread use of centrality 

measures in criminal networks research, this article focuses on the two most common measures 

described above and assesses their robustness when moving from one kind of court record to another. 

The next section describes the data and the methodology adopted in this study. 

3. Data and methods 

When assessing the relationship between the focus of criminal network research – namely, one or more 

criminal groups – and the measures used for the analysis, the general aim of the research needs to be 

considered. If the researchers aim at providing a precise description of the criminal group, then the 

accuracy of available data is a fundamental prerequisite. On the other hand, if the focus is on differences 

between individuals in terms of their position within the criminal group, or on differences across 

networks, then the robustness of network measures to measurement errors needs to be addressed.30 In 

this second case, complete information on each criminal network member is not necessary, as far as the 

sampling still provides reliable results. 

The first part of the analysis aims at assessing whether and to what extent information on actors and 

their relations might differ across different judicial documents, and thus whether data from court 

documents other than wiretap records can guarantee the overall group coverage and provide an accurate 

description of organised crime networks. To achieve this aim, empirical data from an Italian criminal 

 
27 Ibid., 64. 
28 Morselli and Petit, “Law-Enforcement Disruption,” 110; Schwartz and Rouselle, “Using Social Network 

Analysis,” 189; and Williams, “Transnational Criminal Networks,” 159. 
29 Wasserman and Faust, Social Network Analysis; Freeman, “Centrality in Social Networks,” 223–258; and 

Bonacich, “Power and Centrality,” 1170–1182. 
30 Marsden, “Network Data and Measurement.” 
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investigation, for which different court records were available, are used, and networks based upon 

information from different judicial documents are compared. 

Operation Oversize is a criminal investigation against a ’Ndrangheta group mainly operating in the 

Italian province of Lecco.31 The investigation was conducted from 2000 to 2006 by the Police Offices 

of Lecco and Milan and the Investigation Group on Organised Crime (Gruppo d’Investigazione sulla 

Criminalità Organizzata, GICO) of the Guardia di Finanza of Milan and coordinated by the Antimafia 

Prosecutor’s Office of Milan. The suspects were involved in homicides, robberies, and, above all, drug 

trafficking. The trial started in 2007 and lasted until 2009, when the judgment was passed.32 The 

Antimafia District Directorate (Direzione Distrettuale Antimafia, DDA) of Milan provided access to 

several judicial documents related to this investigation. These documents include, among others, wiretap 

records containing the transcripts of 933 wiretapped conversations, the arrest warrant, and the trial 

judgment.33 

The transcripts of intercepted communications contain the transcription of wiretappings and audio 

surveillance of monitored individuals. For each conversation, information on time (date and hour), as 

well as the full transcription, is reported. The warrant of arrest contains a selection of the transcripts, as 

well as other relevant information on both targeted and arrested individuals from informants and other 

investigative activities. Informants’ statements are given prominence and several fragments of the 

interrogations are reported. The trial judgment summarises the evidence that came to light during the 

hearings and describes the illegal activities perpetrated by each convicted individual. The trial judgment 

includes information from several sources of evidence, including wiretappings and audio surveillance. 

The three judicial documents are treated as separate sources of electronic surveillance data and used 

to create three different networks referring to the same criminal investigation. These networks are then 

analysed to assess whether and to what extent information on actors and their relations differ from one 

 
31 The ’Ndrangheta is a mafia-type organization mainly operating in the Calabria region (Italy), but with 

ramifications both in other Italian regions and abroad. Its affiliates are organized in cosche or ‘ndrine, whose 

members are usually bonded by kin ties and exercise their influence over a specific territory. A two-level 

hierarchical structure is present; low-level affiliates are referred to as members of the società minore (lower 

society), whereas bosses are part of the società maggiore (higher society). Within both the società a long series of 

different roles and tasks can be identified. The presence of a hierarchical structure, along with the presence of a 

set of formal rules, an extensive use of rituals and symbols, and strong barriers to entry, guarantees the internal 

cohesion and minimizes the risk of defections. Extortion still remains one of the main activities conducted by the 

’Ndrangheta, especially in its territory of origin. This illegal activity is particularly relevant to exercise control 

over a territory rather than to gain large profits, which are instead generated from drug trafficking. 

For further information on the ’Ndrangheta, cf. Paoli, “An Underestimated Criminal Phenomenon,” 212–238; 

Paoli, Mafia Brotherhoods; Varese, “How Mafias Migrate,” 411–443; Ciconte, ’Ndrangheta; and CPA, Relazione 

Annuale Sulla ’Ndrangheta. 
32 DIA, Relazione Del Ministro dell’Interno, 105–106. 
33 Wiretap records report all wiretapped telephone conversations which were considered pertinent to the 

investigation by the public prosecutor and the defence attorneys. From a comparative perspective, these wiretap 

records can be considered consistent with any judicial document reporting the set of wiretap conversations 

transcribed by the police and made available to the prosecutor to be used as evidence in court. 

In the Italian criminal justice system, before the actual conclusion of the investigation, the prosecution wraps 

up the evidence and formulate the request for remanding suspects in custody or pre-trial detention. The court order 

issued by the preliminary investigation judge (giudice per le indagini preliminari) upon this request is similar to 

arrest warrants in other jurisdictions. 

The Italian criminal justice system enables up to three grades of judgment by different courts. For this study, 

the first grade judgment, which is issued by a tribunal composed by a panel of three judges, has been used. From 

a comparative perspective, this court document is similar to first grade judgments in other jurisdictions (cf. 

Calderoni, “Structure of Drug Trafficking Mafias,” 325). 
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court document to another. The number of actors included in the networks and the number and 

proportion of links among them provide an insight into the overall group coverage when moving from 

data from wiretap records to those from the trial judgment, although a thorough analysis of the effects 

of the loss of information on overall network measures, such as density or cliques, is not provided and 

would require further research. However, the aim of the first part of the analysis is not limited to the 

assessment of whether a loss of information occurs. Node and edge removal might account for a different 

proportion of missing data. Also, node and edge removal might not be random, but actors or links with 

specific characteristics might be more likely to be excluded by the purposive sample after the 

investigation phase. Evidence of any pattern in nodes and edges removal is then gathered before moving 

to the second part of the analysis. 

The second part of the analysis aims at examining the robustness of some of the most commonly used 

centrality measures when data are incomplete due to purposive sampling by law enforcement agencies. 

A set of five criminal networks based on empirical data from wiretap records are used for the analysis. 

This set includes the Oversize network and four criminal groups analysed by Carlo Morselli in his 

previous work and whose network data are publicly available.34 The main requirement for the networks 

to be included in the analysis was the availability of data from wiretap records, whereas criminal groups 

whose networks are based on information from arrest warrants or judgments were excluded. However, 

some criminal networks analysed in the literature and based on information from wiretap records were 

excluded as well, since the data are not publicly available. 

 

Table 1. Networks included in the study.  

  No. nodes No. edges Max. edges Density Mean Degree 

Oversize 182 247 16471 0.015 2.714 

Caviar 110 205 5995 0.034 3.727 

Siren 44 103 946 0.109 4.682 

Togo 33 47 528 0.089 2.848 

Ciel 25 35 300 0.117 2.800 

 

Table 1 lists the networks used for the study, along with their size, density, and mean degree.35 The 

choice of relying on empirical data, rather than generating random networks, depends on the 

acknowledgment that criminal networks generally present structural characteristics different from 

random ones, such as a power-law degree distribution where a large number of actors has only one or a 

few links and a small percentage of actors is highly connected.36 Conversely, the reliance on empirical 

data means that it was not possible to control for the original network size and density, so that their 

 
34 The four networks whose data are available in Morselli’s book are: Ciel, Caviar, Siren, and Togo. The Ciel 

and Caviar networks refer to police investigations that targeted groups involved in drug importation. Projects Siren 

and Togo were instead operations against stolen vehicle exportation networks. For each case study, Morselli did 

not simply described the organizational structure of the criminal groups, but rather focused on a specific feature 

of the networks, such as partnership configurations in drug trafficking groups (Ciel network), the contribution of 

legitimate players in criminal operations and the trade-off between efficiency and security (Caviar network), or 

brokerage and criminal network flexibility (Siren and Togo networks). For more details on the criminal groups 

analysed by Morselli and their network features cf. Morselli, Inside Criminal Networks. 
35 All analyses presented were conducted using binary, undirected matrices, since valued, directed data are not 

available for all Morselli’s criminal networks. 
36 Xu and Chen, “Topology of Dark Networks.” 
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influence on measurement error could not be fully addressed. Also, the original sample of networks was 

very limited, so that the replication of this study with a larger and/or different set of networks could 

provide further insights. 

After computing centrality, the five selected networks were sampled in order to simulate the loss of 

information that was experienced by the Oversize network when moving across different court 

documents; centrality was then computed again and the results were compared to the centrality scores 

of the original network. Based on what was observed for the Oversize network, the measurement error 

introduced to construct the samples combined nodes and edge removal, so that the removal of nodes 

accounted for the 80% of missing links and the remaining 20% of missing edges concerned links 

between actors who were not affected by the node removal. Also, whereas the removal of edges was 

random, the probability for a node to be removed from the network varied according to its degree 

centrality, so that highly connected actors were less likely to be removed and peripheral nodes were 

more likely to be excluded from the sample.37 

Different proportions of error were introduced, starting with the removal of 5% of the nodes (error I), 

and then 10%, 20%, 30%, and 50% (respectively, error II, III, IV, and V). For each of the five networks, 

and for each of the proportions of error, the sampling procedure was replicated 1000 times. Degree and 

betweenness centrality were then computed, and their robustness was assessed using the five measures 

of centrality robustness proposed by Borgatti and colleagues and presented in Table 2.38 Scatterplots 

were then created to analyse the robustness of centrality measures as a function of the amount of 

measurement error added due to nodes and edges removal.39 

Table 2. Measures of centrality robustness.  

Measure Description 

Top 1 Proportion of times that the most central node in the sampled network is also the most central node in 

the empirical network. 

Top 3 Proportion of times that the most central node in the sampled network is among the top three most 

central nodes in the empirical network. 

Top 10% Proportion of times that the most central node in the sampled network is among the top ten percent in 

the empirical network. 

Overlap Number of nodes in both the top 10% of the empirical network and the top 10% of the sampled network, 

divided by the number of node in either.a 

R2 Square of the Pearson correlation between the centralities of the empirical network and the centralities 

of the sampled network, taking only nodes found in both networks. 

Note. aThe overlap between the top 10% of the empirical network and the top 10% of the sampled network is computed as |S ∩ E | / |S ∪ E |, 

where S is the subset of nodes of the sampled network and E is the subset of nodes of the empirical one. 
Source. Borgatti, Carley, and Krackhardt 2006. 

4. Results 

The first part of this section focuses on the differences across the three Oversize networks in terms of 

the amount of information on actors and their relations available in different judicial documents. To 

 
37 𝑝𝑖 =

𝑑𝑒𝑔𝑖

∑ 𝑑𝑒𝑔𝑖
𝑁
𝑖=1

 where 𝑝𝑖  is the probability of the node i to be included in the sample, and 𝑑𝑒𝑔𝑖  is its value of 

degree centrality. 
38 Borgatti, Carley, and Krackhardt, “Robustness of Centrality Measures.” 
39 The analyses were performed using the sna and network packages in R (Butts, ‘sna’; Butts, Handcock, and 

Hunter, ‘network: Classes for Relational Data’). For further information on the sna and network packages, cf. 

Butts, “Social Network Analysis with sna”; Butts, “network.” 
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assess whether and to what extent the arrest warrant and the judgment can provide an accurate 

description of the criminal group, Table 3 presents some descriptive statistics of the three Oversize 

networks. 

Table 3. Descriptive statistics of the Oversize networks.  

 No. Actors % Actors No. Links % Links Density Mean Degree 

Wiretap records 182  100 247  100 0.015 2.714 

Arrest warrant 146 80.22 189 76.52 0.018 2.589 

Judgment 89 48.90 106 46.15 0.029 2.562 

 

Wiretap records report telephone conversations among 182 individuals. The total number of phone 

conversations wiretapped by the police and reported in the document are 933; however, data are here 

treated as binary, leading to 247 links between the actors, equal to the 1.5% of all possible links (density 

= 0.015). When the same network is based on the information available in the arrest warrant, the number 

of actors decreases to 146, equal to the 80% of those listed in the wiretap records. The number of links 

shows a similar trend, since it also experiences a drop of about 20% (from 247 to 189). The density of 

the network slightly increases (1.8%), probably because of the reduction in network actors. When 

moving from the arrest warrant to the judgment, the drop in actors and links is even lager. The remaining 

network members are indeed only 89, whereas the links among them are 114 (46.15% of the total 

number of observed relations). 

Both the number of actors and the number of edges strongly decrease when moving from the network 

based on data from the wiretap records to the networks based on information from the arrest warrant 

and then the judgment. However, this drop does not seem to influence the measures of cohesion of the 

network. The average degree is indeed stable across the three networks and the density remains low, 

although its value has to be carefully compared across networks of different size. 

A possible explanation of this phenomenon can be found by observing the degree distribution for the 

three Oversize networks in Figure 2. The three networks are characterised by the presence of a small 

number of actors involved in a large number of relations with other network members, and a large 

number of actors with only one or a few links. This confirms the results from previous studies, which 

found criminal networks to be characterised by the presence of a few highly connected individuals and 

a large number of peripheral actors.40 As we move from the investigation phase to the judgment, the 

number of peripheral individuals decreases, whereas the highly connected nodes are still in the network, 

although the number of links to other criminal network members has dropped. This suggests that, when 

moving to the judgment, the remaining actors are those with relatively higher degree, while most of 

those who were excluded after the investigation phase were at the periphery of the network. 

Simply looking at the visual representations of the three networks in Figure 3 provides a first 

confirmation of what observed above. Also, further evidence of the differences in terms of degree 

between actors who are present in all three networks and actors whose names appear only in the wiretap 

records or the arrest warrant is provided by the descriptive statistics reported in Table 4. 

 

 
40 Morselli, Inside Criminal Networks; Natarajan, “Drug Trafficking Organization”; and Natarajan, “Heroin 

Distribution Network.” 
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Figure 2. Degree distribution of Oversize networks. 

 

 

Wiretap records Arrest warrant Judgment 

   

Figure 3. Sociograms of Oversize networks. 

 

 

Table 4. Degree and density between and within subgroups.  

 Arrest warrant Judgment 

 Yes (n=146) No (n=36) Yes (n=89) No (n=93) 

Mean degree 3.12 1.08 4.37 1.13 

Max degree 32 2 32 3 

Min degree 1 1 1 1 

Density within groups 0.020 0.002 0.037 0.001 

Density between groups 0.007 0.007 0.012 0.012 

Note. All measures were estimated on the network based on wiretap records, distinguishing between actors whose information was also 

present in the arrest warrant and the judgment and those whose conversations were discarded after the investigation phase. 
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Actors who are present both in the wiretap records and in the arrest warrant have a mean degree three 

times bigger than those whose phone conversations are reported in the wiretap records only. The same 

consideration can be done when comparing actors whose phone conversations are reported in both the 

wiretap records and the judgment with those who are included only in the largest network; the former 

have a mean degree about four times bigger than the latter. Most individuals excluded from the smaller 

sample have indeed only one link to other members of the criminal group, and a maximum of 2 for the 

network based on the arrest warrant and 3 for the network based on data available in the judgment. 

Finally, the peripheral position of actors whose information was discarded in the later phases of the 

judicial process also emerges from the comparison of density scores within and between groups (Table 

4). In both cases, actors who are present only in the larger network have less contact among themselves 

than with those who can be found in all three networks, who have a higher density within group and 

form the core of the criminal network. 

Peripheral and poorly connected actors are thus more likely to be excluded from the network when 

moving from the investigation to the trial phase. This trend can be explained in two different and non-

mutually exclusive ways. On the one hand, actors with higher degree are probably those more involved 

in criminal activities and more active during the investigations. On the other hand, they simply might 

be those whose phones or lines were actually wiretapped, or those who were targeted by the police in 

the early stages of the criminal investigation. Being the main focus of the investigation, the police was 

able to gather more information about them, despite their actual position in the criminal group, although 

long investigations should be less affected by the goals of law enforcement agencies and the way the 

investigation was conducted, especially in its early stages.41 In both cases, law enforcement agencies 

could collect more evidence on these individuals and consequently arrest and charge them. Actors with 

one or a few contacts were instead either less involved in criminal activities or not directly wiretapped, 

and this might have led the police to clear them and to discard the conversations they were involved in 

from further court documents. 

An analysis of the outcome of the trial shows that actors who appeared to be central at the end of the 

investigation were more likely to be prosecuted and convicted, confirming results from previous 

studies.42 A significant positive correlation was indeed found between degree centrality and being 

arrested (r = .586, p < .01) and convicted (r = .256, p < .01). Similar results were obtained after 

correlating betweenness centrality with being arrested (r = .531, p < .01) and convicted (r = .305, p < 

.01). Conviction was also positively correlated with the affiliation to the ’Ndrangheta (r = .660, p < .01). 

Actors who had a formal role within the mafia group were also those with the highest centrality scores. 

They were indeed particularly involved in the organisation of illegal activities and in group management, 

whereas peripheral individuals often participated in the activities of the group only in specific situations 

or with a marginal role. Most individuals whose conversations were only reported in wiretap records 

were involved in the retail or purchase of the drug or in support of traffickers. ’Ndrangheta members, 

on the other hand, were directly involved in drug trafficking and other illegal activities, and thus needed 

to participate in more conversations with other network members. 

The exclusion of peripheral actors from the arrest warrant and the judgment leads also to the loss of 

their links. However, missing edges for reasons other than node removal might also occur. In the 

Oversize network, the exclusion of peripheral actors accounted for the 65.5% of missing edges when 

moving from the network based on the wiretap records to the network based on the arrest warrant, and 

 
41 Campana and Varese, “Listening to the Wire,” 16. 
42 Morselli, “Vulnerable and Strategic Positions.” 
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for the 75.9% of missing edges in the network created with information from the judgment. The 

remaining missing links (34.5% and 24.1%, respectively) instead concerned the loss of information 

about actors who were still part of the criminal network when moving from the investigation to the 

judgment, but not linked to each other. 

The analysis of the differences across the three Oversize networks leads to a first partial conclusion 

that the reliance on data from court documents such as the arrest warrant and the judgment can affect 

the results when the aim of the research is a precise description of a criminal group and the relations 

among its members. Although wiretap records also report only a selection of the electronic 

communication transcripts, they can provide more accurate information of criminal networks, rather 

than the arrest warrant and the judgment, in which half of the actors and links might be missing. 

However, the researcher might seek to obtain indicators reflecting differences among actors in terms of 

network position or differences across networks in terms of structural properties, rather than a precise 

description of the criminal group. In this case, the exclusion of peripheral actors, along with the loss of 

a small percentage of other links among network members, might not have a significant impact on group 

coverage or on network analysis measures of the criminal group, such as centrality measures. 

The aim of the second part of the analysis is thus to assess the robustness of some of the most common 

centrality measures when data are incomplete due to purposive sampling by law enforcement agencies. 

The impact of random measurement error in random networks on the robustness of centrality measures 

has already been tested and the measures of centrality have proved to be quite robust under small amount 

of error.43 However, criminal networks are not randomly constructed, nor is the loss of information 

systematic. 

Table 5 presents the accuracy scores for the five criminal networks considered in this study. 

Consistently with the results of Borgatti and colleagues the two centrality measures behave similarly 

across increasing measurement error due to purposive sampling by law enforcement agencies, although 

betweenness tends to be less robust than degree in two cases (Oversize and Ciel). This is also supported 

by Figure 4, which presents robustness as a function of error level and allows to compare the different 

measures of centrality robustness across the five criminal networks. The Overlap measure is among the 

measures of centrality robustness that declines more rapidly. Only in the Ciel network, its value does 

not experience a sharp drop, probably because of the small size of the network. However, contrary to 

what happened with the random removal of nodes and edges from random networks, here the value of 

the Overlap measure is always above 0.25 and its curve usually becomes steeper after the removal of 

10% of the nodes (error II). 

But the most interesting result is probably the fact that the Top 3 and Top 10% curves show only a 

small deviation from 1, also when half of the nodes are removed from the original network. This result 

could be partially expected, considering the sampling procedure adopted, with actors with high degree 

being less likely to be removed from the network; however, this observation is consistent across all five 

networks and there are no significant differences between degree and betweenness centrality. The largest 

decrease is indeed the decrease of 0.14 when half of the nodes are sampled, experienced by betweenness 

for the Oversize network. Hence, also when 50% of nodes are missing (error V), the actor who appears 

to be central in the sampled network can be found among the top 3 actors and the top 10% actors of the 

original network almost 90% of times. 

 

 
43 Borgatti, Carley, and Krackhardt, “Robustness of Centrality Measures.” 



 

 

Table 5. Results for all networks.  

 % Error - Degree  % Error - Betweenness 

Oversize NA I II III IV V Oversize NA I II III IV V 

Top 1 1.00 0.62 0.59 0.49 0.36 0.27 Top 1 1.00 0.28 0.27 0.22 0.12 0.05 

Top 3 1.00 1.00 1.00 1.00 1.00 1.00 Top 3 1.00 0.93 0.92 0.91 0.89 0.86 

Top 10% 1.00 1.00 1.00 1.00 1.00 1.00 Top 10% 1.00 1.00 1.00 1.00 1.00 1.00 

Overlap 1.00 0.924 0.880 0.776 0.666 0.499 Overlap 1.00 0.917 0.874 0.772 0.664 0.496 

R-Squared 1.00 0.983 0.979 0.967 0.949 0.886 R-Squared 1.00 0.943 0.942 0.931 0.911 0.849 

Caviar NA I II III IV V Caviar NA I II III IV V 

Top 1 1.00 1.00 1.00 1.00 1.00 1.00 Top 1 1.00 1.00 1.00 1.00 1.00 0.99 

Top 3 1.00 1.00 1.00 1.00 1.00 1.00 Top 3 1.00 1.00 1.00 1.00 1.00 1.00 

Top 10% 1.00 1.00 1.00 1.00 1.00 1.00 Top 10% 1.00 1.00 1.00 1.00 1.00 1.00 

Overlap 1.00 0.826 0.788 0.715 0.629 0.453 Overlap 1.00 0.841 0.777 0.700 0.620 0.449 

R-Squared 1.00 0.991 0.989 0.984 0.976 0.952 R-Squared 1.00 0.989 0.985 0.979 0.970 0.943 

Ciel NA I II III IV V Ciel NA I II III IV V 

Top 1 1.00 0.92 0.90 0.84 0.84 0.84 Top 1 1.00 0.66 0.66 0.61 0.62 0.62 

Top 3 1.00 1.00 1.00 1.00 1.00 1.00 Top 3 1.00 1.00 1.00 1.00 0.99 0.99 

Top 10% 1.00 1.00 1.00 1.00 1.00 1.00 Top 10% 1.00 1.00 1.00 1.00 0.99 0.99 

Overlap 1.00 1.00 1.00 0.938 0.938 0.938 Overlap 1.00 0.956 0.938 0.938 0.938 0.938 

R-Squared 1.00 0.966 0.958 0.932 0.910 0.910 R-Squared 1.00 0.946 0.932 0.913 0.904 0.904 

Siren NA I II III IV V Siren NA I II III IV V 

Top 1 1.00 1.00 1.00 1.00 1.00 0.73 Top 1 1.00 1.00 1.00 1.00 0.99 0.62 

Top 3 1.00 1.00 1.00 1.00 1.00 1.00 Top 3 1.00 1.00 1.00 1.00 1.00 1.00 

Top 10% 1.00 1.00 1.00 1.00 1.00 1.00 Top 10% 1.00 1.00 1.00 1.00 1.00 1.00 

Overlap 1.00 0.631 0.640 0.693 0.642 0.492 Overlap 1.00 0.783 0.793 0.699 0.674 0.495 

R-Squared 1.00 0.983 0.979 0.947 0.903 0.743 R-Squared 1.00 0.989 0.986 0.964 0.935 0.814 

Togo NA I II III IV V Togo NA I II III IV V 

Top 1 1.00 1.00 1.00 1.00 0.99 0.99 Top 1 1.00 1.00 1.00 1.00 1.00 0.99 

Top 3 1.00 1.00 1.00 1.00 1.00 1.00 Top 3 1.00 1.00 1.00 1.00 1.00 1.00 

Top 10% 1.00 1.00 1.00 1.00 1.00 1.00 Top 10% 1.00 1.00 1.00 1.00 1.00 1.00 

Overlap 1.00 0.997 0.972 0.666 0.662 0.652 Overlap 1.00 0.980 0.959 0.657 0.652 0.652 

R-Squared 1.00 0.976 0.972 0.958 0.937 0.885 R-Squared 1.00 0.975 0.971 0.963 0.945 0.905 



 

 

 

Figure 4. Degree and betweenness accuracy as a function of error level for all networks. 
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The Top 1 measure of centrality robustness shows instead varying results across the five networks 

considered in this study. The actor with the highest degree centrality in the sampled network appears to 

be the one with the highest degree score in the original network most of times, with one exception, 

namely the results for the Oversize network. Further analyses would be necessary to support any 

conclusion, but a possible explanation might be related to the degree distribution and the presence, in 

the Oversize network, of two actors with similarly high centrality scores, so that variations in the number 

of nodes and edges might easily lead to the exchange of the first and second position in the network, in 

terms of degree. When the difference between the most central actor and the other network members is 

instead heightened, any position exchange might be less likely to occur and the Top 1 measure should 

be more robust after nodes and edges removal. 

The Top 1 measure of robustness shows a similar trend also for betweenness centrality. The Oversize 

network still presents values significantly lower than all other criminal groups, although the four 

remaining networks present more variability in terms of the robustness of the Top 1 measure than they 

do in the case of degree centrality. The robustness of the Top 1 measure for the Caviar network, for 

example, experiences a substantial drop after the removal of 5% of nodes (error I), although the accuracy 

scores do not decrease further after the first drop. 

To conclude, both centrality measures appear to be more robust in case of purposive sampling by law 

enforcement agencies than in case of random errors in random networks. Also, when half of nodes are 

missing, there is a high probability that the actor with the highest centrality score in the sampled network 

is also among the first three most central nodes in the original, overall network. The overlap between 

the top actor in both the sampled and the original network is instead less likely to occur, as the 

measurement error increases and it is likely to be influenced by the degree distribution within the 

network, along with its size and density. The next two paragraphs discuss the implications of these 

results for criminal network analysis and present the limitations of the study, whereas the last paragraph 

draws the conclusions. 

5. Limitations 

This study comes with a series of limitations that hinder the generalisation of the results. First, to create 

the networks samples it has been assumed that the loss of information from the wiretap records to the 

judgment experienced by the Oversize network is likely to occur to the same extent in other criminal 

investigations. It is not possible to know whether this is actually true, although it is plausible to expect 

a similar trend, namely the exclusion of peripheral actors rather than central ones as the investigation 

proceeds. 

Second, node and edge removal might account for a different proportion of missing data in different 

networks, although the sampling procedure adopted in this study is more realistic than random removal. 

Also, only nodes were sampled according to their degree, whereas another 20% of edges was randomly 

removed. Replicating the same study with valued and directed data might provide an insight into the 

characteristics of this 20% of links who were missing from the network for reasons other than node 

removal. We might expect, for example, that reciprocated ties are less likely to be missing. Or that links 

based only on one or a few telephone calls are more likely to be excluded than those based of a larger 

number of conversations. 

Finally, the reliance on empirical data, rather than generating random networks, did not allow to 

control for network size and density, so that their influence on the measurement error could not be fully 
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addressed. Also, the original sample of networks was very limited, mainly because of the small number 

of publicly available data on criminal networks. The replication of this study with a larger set of 

networks, as well as a different one, might provide further insights into the robustness of centrality 

measures in this particular setting. 

Despite these limitations, some conclusions on the reliability of different court records to analyse 

criminal networks and identify central actors can be drawn. 

6. Discussion 

The first aim of this study was to assess whether data from court documents other than wiretap records 

can provide an accurate description of criminal networks. The analysis of the three Oversize networks 

allowed the identification of differences among sets of relational data extracted from different court 

documents. Both the number of actors and the number of links among them decrease, and in the 

judgment, only about 50% of both actors and edges are reported. Due to this substantial drop, both the 

arrest warrants and the judgment do not seem to provide an accurate description of the network, although 

the two measures of cohesion of the network – density and mean degree – remain fairly stable across 

the three Oversize networks. However, the lesser accuracy of judgments and, to some extent, of arrest 

warrants, compared to wiretap records, may lead to an incomplete picture of the network and, 

consequently, to misleading results for the overall network measures, as suggested by Campana and 

Varese.44 

The first part of the analysis also provided evidence of the purposive sampling conducted by law 

enforcement agencies when moving from the investigation to the trial phase and discarding part of the 

electronic surveillance data. Peripheral and poorly connected actors were more likely to be excluded 

from the network after the investigation phase, either because they are less involved in criminal activities 

or they do not contribute directly to the issues targeted by the police. 

The second aim of this research was instead to assess the reliability of data found in different judicial 

documents to identify key players. The results seem to suggest that degree and betweenness centrality 

are quite robust under conditions of missing nodes and edges. These findings are consistent with those 

from previous studies, which proved the accuracy of centrality measures under small amounts of random 

measurement error.45 They also show that the two most commonly used centrality measures are even 

more robust in organised crime research, where networks are not random, and neither is the 

measurement error, since actors with low degree are more likely to be excluded from the networks based 

on information from arrest warrants and judgments. Degree and betweenness centrality have indeed 

proved to be particularly robust, also under large amounts of error. Whereas the correct identification of 

the most central actor might not always be accurate, especially when a large number of nodes and edges 

is missing, widening the scope to the first three actors is likely to provide reliable results in terms of the 

identification of the key players within the criminal group. 

On the basis of these results, some considerations on the implications that the reliance on a specific 

source of wiretap data might have on the SNA of criminal groups can be made. Despite the probability 

of missing information, arrest warrants and judgments seem to be reliable data sources to identify key 

 
44 Campana and Varese, “Listening to the Wire.” 
45 Bolland, “Sorting Out Centrality”; Costenbader and Valente, “Stability of Centrality Measures”; Borgatti, 

Carley, and Krackhardt, “Robustness of Centrality Measures”; and Xu and Chen, “Topology of Dark Networks.” 
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players regardless of whether a large proportion of peripheral nodes is missing. The purposive sampling 

conducted by law enforcement agencies guarantees a low probability of relational information on key 

players to be discarded when moving from the investigation phase to the judgment. Also, contrary to 

other judicial documents, judgments are publically available and contain information other than 

conversations among network members. Provided that they include sufficient information on relations 

among the members of a criminal group, they thus may be a useful source of data for the SNA of criminal 

organisations.46 

Considering the amount of information present in the different types of court documents, wiretap 

records should probably be the first choice for researchers interested in the analysis of criminal networks. 

However, given the public availability of judgments, as opposed to wiretap records and arrest warrants, 

and the robustness of centrality measures under conditions of imperfect data, the reliance on judgments 

might further facilitate the spread of SNA methods in organised crime research. 

7. Conclusions 

This study has addressed the issue of the accuracy and reliability of different law enforcement data 

sources for the analysis of criminal networks through SNA and the identification f key players. Despite 

several limitations, the results suggest that degree and betweenness centrality are particularly robust 

when the available information constitutes a purposive sample of all wiretapped telephone conversations 

among criminal network members. This findings have both research and policy implications. 

First, they suggest that researchers aiming at applying SNA in a criminological context should be 

confident about relational data collected from different kinds of court records, including judgments, 

especially when the focus of the research is on differences between individuals in terms of their position 

within the criminal group, rather than a precise description of the group itself. This is particularly 

relevant considering that some types of judicial sources, such as judgments, are publicly available once 

the case is closed, whereas wiretap records and arrest warrants might not be accessible to the researcher. 

Second, evidence of the robustness of centrality measures under conditions of imperfect data means 

that the adoption of network analysis measures during criminal investigations may help law enforcement 

agencies to identify key players within the criminal group under investigation, in order to arrest them 

and achieve the maximum of disruption of the network. 

The positive findings with respect to the reliability of data from different court documents should 

however be supported and strengthen by further studies involving different criminal investigations in 

different jurisdictions, a larger set of criminal networks, or relational data where the information on the 

direction and amount of telephone calls is preserved. 

 

 

 

Acknowledgements   I thank Ferdinando Pomarici and Galileo Proietto, state prosecutors of the Antimafia District Directorate 

(Direzione Distrettuale Antimafia, DDA) of Milan, who provided access to the judicial documents for operation Oversize. I 

am also grateful to Francesco Calderoni (Università Cattolica del Sacro Cuore, Milano), George Tita (University of California, 

Irvine), and the two anonymous reviewers for their valuable comments. My gratitude also goes to Zack Almquist and Adam 

Boessen (University of California, Irvine) for their help with the sna and network packages in R. 

 
46 Bright, Caitlin, and Chalmers, “Illuminating Dark Networks,” 174. 



 

19 

References 

Baker, W. E., and R. Faulkner. “The Social Organization of Conspiracy: Illegal Networks in the Heavy Electrical 

Equipment Industry.” American Sociological Review 58, no. 6 (1993): 847. 

Bolland, J. M. “Sorting Out Centrality: An Analysis of the Performance of Four Centrality Models in Real and 

Simulated Networks.” Social Networks 10, no. 3 (1988): 233–253. 

Bonacich, P. “Power and Centrality: A Family of Measures.” American Journal of Sociology 92 (1987): 1170–

1182. 

Borgatti, S. P., K. M. Carley, and D. Krackhardt. “On the Robustness of Centrality Measures Under Conditions of 

Imperfect Data.” Social Networks 28 (2006): 124–136. 

Bright, D. A., E. H. Caitlin, and J. Chalmers. “Illuminating Dark Networks: A Social Network Analysis of an 

Australian Drug Trafficking Syndicate.” Crime, Law and Social Change 57, no. 2 (2012): 152. 

Bruinsma, G., and W. Bernasco. “Criminal Groups and Transnational Illegal Markets: A More Detailed 

Examination on the Basis of Social Network Theory.” Crime, Law and Social Change 41, no. 1 (2004): 79–94. 

Butts, C. T. “Social Network Analysis with sna.” Journal of Statistical Software 24, no. 6 (2008): 1–51 

Butts, C. T. “network: A Package for Managing Relational Data in R.” Journal of Statistical Software 24, no. 6 

(2008): 1–36 

Butts, C. T. “sna: Tools for Social Network Analysis.” R Package Version 2.2-0, 2010. 

Butts, C. T., M. S. Handcock, and D. R. Hunter. “network: Classes for Relational Data.” R Package Version 1.7-

1, 2012. 

Calderoni, F. “The ’Ndrangheta Through the Lens of Social Network Analysis: A Tale from Calabria.” Presented 

at the American Society of Criminology Annual Meeting 2010, San Francisco, CA, November 17, 2010. 

Calderoni, F. “The Structure of Drug Trafficking Mafias: The ’Ndrangheta and Cocaine.” Crime, Law and Social 

Change 58, no. 3 (2012): 325. 

Campana, P. “Eavesdropping on the Mob: The Functional Diversification of Mafia Activities Across Territories.” 

European Journal of Criminology 8, no. 3 (2011): 213–228. 

Campana, P., and F. Varese. “Listening to the Wire: Criteria and Techniques for the Quantitative Analysis of 

Phone Intercepts.” Trends in Organized Crime 15, no. 1 (2012): 13–30. 

Carrington, P. J. “Crime and Social Network Analysis.” In Sage Handbook of Social Network Analysis, edited by 

J. Scott and P. J. Carrington, 244. London: SAGE Publications, 2011. 

Ciconte, E. ’Ndrangheta. Soveria Mannelli: Rubbettino, 2008. 

CPA (Commissione Parlamentare Antimafia). Relazione Annuale Sulla ’Ndrangheta, Doc. XXIII, N. 5, XV 

Legislatura, Roma: Commissione parlamentare di inchiesta sul fenomeno della criminalità organizzata mafiosa 

o similare, 2008. 

Costenbader, E., and T. W. Valente. “The Stability of Centrality Measures When Networks Are Sampled.” Social 

Networks 25, no. 4 (2003): 283–307. 

DIA (Direzione Investigativa Antimafia). Relazione Del Ministro dell’Interno Al Parlamento Sull’attività Svolta 

e Sui Risultati Conseguiti Dalla Direzione Investigativa Antimafia. 1◦ Semestre 2007. Roma: Direzione 

Investigativa Antimafia, 2007, 105–106. 

Freeman, L. C. “Centrality in Social Networks: Conceptual Clarification.” Social Networks 1, no. 3 (1979): 223–

258. 

Ianni, F. A. J., and E. Reuss-Ianni. “Network Analysis.” In Criminal Intelligence Analysis, edited by P. Andrews 

and M. B. Peterson, 81–82. Loomis, CA: Palmer Enterprises, 1990. 

Klerks, P. “The Network Paradigm Applied to Criminal Organizations: Theoretical Nitpicking or a Relevant 

Doctrine for Investigators? Recent Developments in the Netherlands.” Connections 24, no. 3 (2001): 53–65. 

Kossinets, G. “Effects of Missing Data in Social Networks.” Social Networks 28, no. 3 (2006): 249. 

Laumann, E. O., P. V. Marsden, and D. Prensky. “The Boundary Specification Problem in Network Analysis.” In 

Research Methods in Social Network Analysis, edited by L. C. Freeman, D. R. White, and A. Kimball Romney, 

62. New Brunswick, NJ: Transaction Publishers, 1992. 

Malm, A. E., and G. Bichler. “Networks of Collaborating Criminals: Assessing the Structural Vulnerability of 

Drug Markets.” Journal of Research in Crime and Delinquency 48, no. 2 (2011): 20. 

Malm, A. E., G. Bichler, and S. Van De Walle. “Comparing the Ties That Bind Criminal Networks: Is Blood 

Thicker Than Water?” Security Journal 23, no. 1 (2010): 70. 

Marsden, P. V. “Network Data and Measurement.” Annual Review of Sociology 16, no. 1 (1990): 439. 



 

20 

McAndrew, D. “The Structural Analysis of Criminal Networks.” In The Social Psychology of Crime: Groups, 

Teams and Networks, edited by D. Canter and L. Alison, Offender Profiling Series III, 51–94. Aldershot: 

Ashgate Publishing, 1999. 

McIllwain, J. S. “Organized Crime: A Social Network Approach.” Crime, Law and Social Change 32, no. 4 (1999): 

301–323. 

Morselli, C. “Assessing Vulnerable and Strategic Positions in a Criminal Network.” Journal of Contemporary 

Criminal Justice 26, no. 4 (2010): 382–392. 

Morselli, C. Contacts, Opportunities and Criminal Enterprise. Toronto: University of Toronto Press, 2005. 

Morselli, C. Inside Criminal Networks. New York, NY: Springer, 2009. 

Morselli, C., and K. Petit. “Law-Enforcement Disruption of a Drug Importation Network.” Global Crime 8, no. 2 

(2007): 110. 

Natarajan, M. “Understanding the Structure of a Drug Trafficking Organization: A Conversational Analysis.” In 

Illegal Drug Markets: From Research to Policy, edited by M. Natarajan and M. Hough, 273–298. Vol. 11. 

Crime Prevention Studies. Monsey, NY: Criminal Justice Press, 2000. 

Natarajan, M. “Understanding the Structure of a Large Heroin Distribution Network: A Quantitative Analysis of 

Qualitative Data.” Journal of Quantitative Criminology 22, no. 2 (2006): 171–192. 

Paoli, L. Mafia Brotherhoods: Organized Crime, Italian Style. New York: Oxford University Press, 2003. 

Paoli, L. “An Underestimated Criminal Phenomenon: The Calabrian ’Ndrangheta.” European Journal of Crime, 

Criminal Law and Criminal Justice 2, no. 3 (1994): 212–238. 

Schwartz, D. M., and T. D. A. Rouselle. “Using Social Network Analysis to Target Criminal Networks.” Trends 

in Organized Crime 12, no. 2 (2009): 189. 

Spapens, T. “Macro Networks, Collectives, and Business Processes: An Integrated Approach to Organized Crime.” 

European Journal of Crime, Criminal Law and Criminal Justice 18, no. 2 (2010): 193. 

Sparrow, M. K. “The Application of Network Analysis to Criminal Intelligence: An Assessment of the Prospects.” 

Social Networks 13 (1991): 251–274. 

Varese, F. “The Structure of Criminal Connections: The Russian-Italian Mafia Network.” Oxford Legal Studies 

Research Paper 21 (2006): 1–71 

Varese, F. “How Mafias Migrate: The Case of the ’Ndrangheta in Northern Italy.” Law and Society Review 40, 

no. 2 (2006): 411–443. 

van der Hulst, R. C. “Introduction to Social Network Analysis (SNA) as an Investigative Tool.” Trends in 

Organized Crime 12, no. 2 (2009): 101–121. 

von Lampe, K. “Human Capital and Social Capital in Criminal Networks: Introduction to the Special Issue on the 

7th Blankensee Colloquium.” Trends in Organized Crime 12, no. 2 (2009): 93–100. 

Wasserman, S., and K. Faust. Social Network Analysis: Methods and Applications. New York, NY: Cambridge 

University Press, 1994. 

Williams, P. “Transnational Criminal Networks.” In Networks and Netwars: The Future of Terror, Crime and 

Militancy, edited by J. Arquilla and D. Ronfeldt, 159. Washington, DC: RAND Corporation, 2001. 

Xu, J. J., and H. Chen. “The Topology of Dark Networks.” Communications of the ACM 51, no. 10 (2008): 58–

65. 


